Podvariera, teiné veltory a normálové formy Nurié Σ do M

$$
C: \sum \rightarrow M
$$

TI teerýgnde Σ
TMMCTM ter ée weetorarks w TM
$C_{*}: T \sum \rightarrow T^{\prime} M C T M$

$$
a \rightarrow c \times a
$$

$\mathrm{N}^{*} \Sigma$ mormále ó bua de forem
T_{1} MCTHM mormálové forng \sum w $T^{+1} M$
IIH womáloné foung amiliel THM $k \in \pi_{1} M \Leftrightarrow \forall a c \Pi^{\prime \prime} M \quad k \cdot a=0$

$N^{+} E$ alstractin woor norm. forem. $\pi_{2} M$

$\nu_{*}: \mathbb{N}^{*} \Sigma \rightarrow T_{1} M \subset T^{*} M$

$$
k \rightarrow x_{2} k
$$

T*E hodury bundl Σ
$L^{*} \cdot \pi^{*} M \xrightarrow{\rightarrow} \pi^{*} \Sigma$ restribue
$\mathbb{N} \Sigma$ mormáloos' bundl vettorin $\nu^{*}: \mathbb{F} M \rightarrow N \Sigma$ restriked

$$
\left.u \rightarrow u\right|_{\text {NI }}=\nu^{*} u \text { maNE }
$$

$$
\left.k \cdot u\right|_{W \Sigma}=\left(v_{x} k\right) \cdot u
$$

ignornje tiènon Sbuztun Milad mozit do $\pi M \quad{ }^{\prime} \Pi^{\prime} M=0$

$$
\begin{aligned}
& \left.\omega \sim \omega\right|_{\pi \bar{\Sigma}}=1 * \omega \quad m a \pi \\
& \omega \omega_{\pi=}=a=\omega \cdot(L+a)
\end{aligned}
$$

I'M morméluré vestony unoremé do TM
$C_{x}: N \Sigma \rightarrow \mathbb{I}^{1} M C \pi M$
definozáno pmocís

2. fundamentálni forme bez projoktor u
∇ obena' koo der ma VM
$a, b \in \pi \sum \quad i \times a, l, b \in \pi^{\prime} M$ the é veltem
$k_{1} \lambda \in \mathbb{N}^{*} \Sigma$
$V_{*} K, V_{\infty}-\lambda \in J_{\perp} M$ morn áloze fiong

$$
\gamma^{+}\left(\nabla_{a} a b\right) \in \mathbb{N} \mid \Sigma
$$

- whtrabuke ${ }^{\prime}$ n a s veast-ost: ∇
- witralokél n ab

$$
\gamma^{*}\left(\nabla_{1, a}(1, f b)\right)=\nu^{*}\left(s f, \nabla_{b, a}(x b+6, b c, f f\}\right)=f \gamma^{*}\left(\nabla_{1, a}(, b)\right.
$$

- lae repuzentout teware

$$
\begin{array}{ll}
\mathbb{I}_{a} \in \pi^{*} \Sigma \Theta \mathbb{N} \Sigma & \gamma^{*}(\nabla \cdot b)=I_{a} \cdot b \\
I \in \Pi_{0}^{0} \sum \otimes \mathbb{N} & \Pi_{a} \cdot b=a \cdot I \cdot b
\end{array}
$$

$$
l^{*}\left(\nabla_{l a} \nu_{*} k\right) \in T^{*} \Sigma
$$

- iltrolckélé a

日 alcost-cst, $>$

- witralckél - $-k$

$$
c^{*}\left(\nabla_{l, a^{\prime}} \nu_{k}(f k)\right)=c^{*}\left(L_{+} f \nabla_{1, a} \nu_{2} k+\nu_{i} k, a(f)\right)=f c^{k}\left(\nabla_{l, 0}, \nu_{ \pm} k\right)
$$

$$
\mathbb{I}_{a} \in \Pi^{*} \sum \otimes \mathbb{N} \sum \quad i^{*}\left(\nabla_{L k} x_{\leq}\right)=-k \cdot \mathbb{I}_{a}
$$

$$
\begin{aligned}
& =b^{(}\left(\nabla_{b}, r_{x}\right) \cdot b+k \cdot \gamma^{v}\left(\nabla_{b a} a, b\right)=-k \cdot \tilde{I}_{a} \cdot b+k \cdot \tilde{I}_{a} \cdot b \quad \Rightarrow \quad \tilde{I}_{a}=\Pi_{a}
\end{aligned}
$$

restrikce tores

$$
\begin{aligned}
& T_{4 a, b b}=\nabla_{1, a,} 4 b-\nabla_{1, b} l_{*} a-\{1+a, 1 * b\}=\nabla_{* a} b b-\nabla_{1, b} b_{2} a-1_{*}[a, b] \\
& \nu^{*} T_{6 a, b b}=\nu^{*}\left(\nabla_{, a}(\times b)-\nu^{*} \nabla_{(4, b}(\cdot a)=a \cdot \boldsymbol{I} \cdot b-b \cdot \Pi \cdot a\right. \\
& \left(\nu^{*} T \equiv T_{i l}^{\nu}=\mathbb{I}-\mathbb{I I}^{\top}\right.
\end{aligned}
$$

Podvarieta s prijektorem

$$
\left(\sum \rightarrow M \quad \text { polvoriele } \sum \quad M\right.
$$

provzené atrultury
prajetory ma teime' an moun. Alozily
THM Nolla monál. pappostorn nebtorin THCTM $\Pi M=\pi^{\prime} H / \in T^{H} M$

$$
k \in \bar{\Pi}^{1} M \Leftrightarrow \forall \alpha \in \Pi_{,} M \quad \alpha \cdot k=0
$$

$$
\alpha \in \pi_{1} M \Leftrightarrow \quad \forall k \in \pi^{1} M \quad \alpha \cdot k=0
$$

projettory

$$
i_{*} \quad T \sum \rightarrow \pi^{\prime \prime} M \subset \bar{\Pi} M \quad c_{*} a \in \mathbb{T}^{\prime} M \quad \quad^{*} L_{*} a=0
$$

$$
\text { L. } \Pi \in \mathbb{N} \Sigma \rightarrow \pi M \quad \text { isonourfiens Nebdarin }
$$

$$
\nu_{*} \cdot \mathbb{N}^{*} \Sigma \cdots \pi_{1} M \in \mathbb{I} M \quad \nu_{*} k \in \pi_{1} \Pi \quad i^{*} \nu_{*} k=0
$$

$$
\nu_{\infty} \cdot \pi^{x} \Sigma \rightarrow \pi_{n} M \in \mathbb{H} M \quad \gamma_{\infty} \alpha \in \Pi_{0} M \quad L^{*} \gamma_{+} \alpha=\alpha \quad \text { nessina- no } T^{*} \Sigma
$$

$$
y_{1}: \pi^{*} \oplus \mathbb{N}^{*} \sum \rightarrow \pi^{*} M \text { isonoufas foren }
$$

$$
\left(\nu_{*}(\Pi+N)_{a}^{P} \Sigma \rightarrow T_{9}^{P} M \text { roonurf indickrang is ma Nest. a } y_{x}\right. \text { ma furn }
$$

pü jexorangeh 10 prostorech $T^{ \pm} M$ $T_{M} M$ iesp projeturech " δ_{1} to netriba suzlis̃uat mezi

$$
(\mathbb{I}+\mathbb{N i})_{q}^{p} \sum \quad a \quad \mathbb{T}_{q}^{p} M
$$

$$
\begin{aligned}
& \text { " } \delta \pi M \rightarrow \pi^{\prime} M \quad \text { ker } \delta=\pi^{1} M \text { ing " } \delta=\pi^{\prime \prime}+1 \quad \text { " } \bar{\delta}+\bar{\delta}=\delta
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llll}
\text { N } \delta, \pi^{*} M \rightarrow \pi_{1} M & \text { ker } \sigma=\pi_{1} M & \text { ing } \delta \delta=\pi_{1} M \\
\text { i } \delta, \pi M \rightarrow \pi_{1} M & \text { ker" } \delta=\pi_{4} M & \text { ing } \delta=\pi_{1} M
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& c_{*} \quad T \sum \rightarrow T^{\prime \prime} M \subset T M \\
& \text { Nomo'rén tienck veitur } \\
& \text { (*: } \mathbb{i}^{*} M \longrightarrow \pi^{*} \Sigma \\
& \nu_{*}: \mathbb{M}^{*} \sum \rightarrow \pi_{\perp} M \subset \mathbb{I}^{*} H \\
& \text { N'morè - mornálorjch fore } \\
& \nu^{*} \cdot \pi \Pi \rightarrow N V \\
& \text { restrite veitorin mon nomál weit }
\end{aligned}
$$

Podvariey riemanouske variety

$$
\begin{aligned}
& c: \sum C M \\
& \operatorname{di}-M=m \\
& \operatorname{di}-N=m
\end{aligned}
$$

M a mietsikou of
unosincje artogonél' rozjtèper

$$
\pi_{x} M=\pi_{x}^{\prime \prime M}+\pi_{x}^{1} M
$$

$$
\pi_{x}^{\prime \prime} M=\pi_{x} E \quad \text { tecé veltory }
$$

$\pi_{x}^{+} M \quad$ mornálove' veltary

$$
k \in \Pi_{x}^{1} M \Leftrightarrow \forall a \in \bar{M}_{x}^{\prime} M \quad k \cdot g \cdot a=0
$$

umozinige noorit $\pi_{x}^{*} \Sigma$ do $T^{*} M$ jaro teenéforny

$$
\begin{gathered}
\pi_{x}^{*} M=\pi_{x \|} M+\bar{T}_{x \perp} M \\
\pi_{x \perp} M=\mathbb{N}_{x} \Sigma \\
T_{x M} M
\end{gathered}
$$

mornélové 1-fory
teiné 1 - forz

$$
\begin{aligned}
\alpha \in \pi_{x M} M & \Leftrightarrow \forall k \Pi_{x}^{\perp} M \quad \alpha \cdot k=0 \\
& \Leftrightarrow \forall \in \Pi_{x \perp} M \quad \propto \cdot g^{-1} \cdot k=0
\end{aligned}
$$

metriba se rozstilije ma ortog. banpurath

$$
g={ }^{4} g+1 g \quad g^{-1}=" g^{-1}++g^{-1} \quad \delta=" \Delta+1 \delta \quad \text { " } \delta^{1} \delta \text { pojektory }
$$

konzistence svedém'/arizovén' i-diter

$$
\begin{aligned}
& a={ }^{\#} \alpha \in \mathbb{T}^{\prime \prime} M \quad \Leftrightarrow \quad \alpha=b^{b} a \in \mathbb{T}_{\|} M \\
& k={ }^{*} k \in \Pi^{1} M \quad \Leftrightarrow \quad k={ }^{b} k \in \bar{T}_{+} M
\end{aligned}
$$

Bnacè -

$$
\delta=" \delta+i \delta
$$

"S projektor me Q"M
is projetctar na $\bar{q}^{+1} M$

"A res, ${ }^{\text {A }} A$ idiknje, Be "A je tecre, rese. ${ }^{1} A$ je morun. ve visech i-dexech
budene usivat

$$
\begin{array}{ll}
a, b, c, \ldots & \in \mathbb{\pi}^{4} M \\
\alpha, \beta, \delta \cdots & \in \mathbb{\pi}_{n} M \\
k, l, m, \ldots & \in \pi^{4} M \\
k, \lambda, r, \ldots & \in \pi_{\perp} M
\end{array}
$$

metrice

$$
\begin{aligned}
& 4 g=g_{14} \\
& +g=g_{11} \\
& { }^{1} g^{-1}=g^{-11} \\
& g_{14}=g_{11}=0
\end{aligned}
$$

metrike ma $\Pi \Sigma \equiv \Pi^{\prime \prime M}$
pretrice n monélové bualle $\mathbb{N} E \equiv \pi^{1} M$ metritse ne $\mathbb{N}^{*} \sum \equiv \pi_{1} M$ ortogoralit.

Rozstèpení kov.derivace na IM
∇ obecné kov.der. ma IM
akce na tiòmén bundh II
diet: " $\left(\nabla_{c} a\right)$ splinge wisech whad kov. dor.

$$
{ }^{-}\left(\nabla_{c} a\right) \text { netroalok } \sim a \cdot{ }^{1}\left(\nabla_{c}(f a)\right)={ }^{1}\left(f \Gamma_{c} a+c[f] a\right)=f^{1}\left(\nabla_{c} a\right)
$$

$$
\left.\nabla_{c} A=\nabla_{c} A\right) \quad \text { po } \quad A=" A
$$

dive: stoad vosisine ó me toong:

$$
\begin{aligned}
& \left(\nabla_{c} \alpha\right) \cdot a=C(\alpha, a)-\alpha \cdot \nabla_{c} a=\nabla_{c}(\alpha a)-\alpha \cdot \nabla_{c} a=\left(\nabla_{c} \alpha\right) \cdot a=\left(\nabla_{c} \alpha\right) \cdot a \\
& \Rightarrow \nabla_{c} \alpha=V_{c}\left(\nabla_{c} \alpha\right)
\end{aligned}
$$

 prozere pletí

$$
\begin{aligned}
& \nabla_{c}^{\prime \prime} \delta=0 \\
& \text { ding } \nabla_{c} a= \\
& \text { déperi lorgee } \\
& T_{\text {III }}^{\prime \prime}=\mathbb{T} \\
& T_{\text {III }}^{1}=\mathbb{I}-\mathbb{I}^{\top}
\end{aligned}
$$

$$
\text { and } \left.\nabla_{c} a=\nabla_{c}^{\prime \prime}(\delta \cdot a)="\left(\nabla_{c}(\delta \cdot a)\right)="\left(\nabla_{c}^{\prime \prime} \delta\right) \cdot a+\prime \cdot \nabla_{c} a\right)={ }^{\prime \prime}\left(\nabla_{c}^{\prime} \delta\right) \cdot a+\prime\left(\nabla_{c} a\right)=\left(\nabla_{c}^{\prime} \delta\right) \cdot a=\nabla_{c} a
$$

nozistèpen torge
dir

$$
\begin{aligned}
& T_{a, b}^{\prime \prime}="\left(\nabla_{a} b-\nabla_{b} a-(a, b]\right)=\nabla_{a} b-\nabla_{b} a-[a, b]=T_{a, b} \\
& T_{a, b}^{1}={ }^{+}\left(\nabla_{a} b-\nabla_{b} a-(a, b)\right)=a \cdot I \cdot b-b \cdot I I \cdot a
\end{aligned}
$$

$$
\begin{aligned}
& \nabla_{c} a=\nabla_{c} a+\mathbb{I}_{c} \cdot a \\
& \nabla_{c} a="\left(\nabla_{c} a\right) \\
& \Pi_{c} \cdot a=c \cdot I \cdot a={ }^{1}\left(\nabla_{c} a\right) \\
& \mathbb{I}_{c}=\mathbb{I}_{c \|}^{+} \quad \mathbb{I}_{c} c \Pi_{1}^{1} 17 \Leftarrow \mathbb{T}_{\|}^{*} \otimes \mathbb{N} \Sigma \\
& \text { II }=\Pi_{\| \|}^{1} \quad \text { II } \subset \pi_{\| 11}^{\perp} \eta \Leftarrow \pi_{2}^{0} \cup \mathbb{N} \Sigma
\end{aligned}
$$

abce me mornncilorén bundle $\mathbb{N} \Sigma$

$$
\nabla_{c} k=\nabla_{c} k-\bar{I}_{c} k \quad \text { Niingartinova formule }
$$

$$
\nabla_{c} k={ }^{1}\left(\nabla_{c} k\right)
$$

Sov. dir ma WI

$$
I_{c} \cdot k=-"\left(\nabla_{c} k\right)
$$

shape operétor $\left(S_{1} \cdot c \equiv \bar{I}_{c} k\right)$

$$
\bar{I}_{c}=\bar{\Pi}_{c \perp}^{\prime \prime} \quad \tilde{I}_{c} \in \mathbb{I}_{\perp}^{\prime \prime} M \leftrightarrow \pi \omega N^{*} \sum
$$

dik: ${ }^{1}\left(\nabla_{c} k\right)$ splinije viechy ol. Soo der me NIE
" ($\left.\nabla_{c} k\right)$ ultralok. vk: " $\left.\left(\nabla_{c} \mid f k\right)\right)="^{\prime \prime}\left(f \nabla_{c} k+c \mid f 7 k\right)=f^{\prime}\left(\nabla_{c} k\right)$
rozóire ‘́ D^{\prime} ma mormálove tenzory $\Pi_{+q}^{+p} \Pi \leftrightarrow \mathbb{N}_{q}^{P} \Sigma$

$$
\nabla_{c} M={ }^{1}\left(\nabla_{c} M\right) \quad \text { peo } \quad M={ }^{1} M
$$

dier: stend rozäire- me tifong:

$$
\begin{aligned}
& \left.\left(\nabla_{c} \mu\right) \cdot k=c[f \cdot k]-\mu \cdot \nabla_{c} k=\nabla_{c}(\mu \cdot k)-\mu \cdot \nabla_{c} k=\nabla_{c} \mu\right) \cdot k={ }^{1}\left(\nabla_{c} \mu\right) \cdot k \\
& \Rightarrow \nabla_{c} \mu=+\left(\nabla_{c} \mu\right)
\end{aligned}
$$

 pinnoze è lad.

$$
\pi / c \delta=0
$$

restrikee ∇ ma prosiosobenour loor.dez

$$
\begin{aligned}
& \bar{V}=\| \oplus \psi \quad \text { мa } \quad \Pi \Pi \leftrightarrow(\| \Leftrightarrow N) \Sigma
\end{aligned}
$$

$$
\begin{aligned}
& \bar{\nabla}=\nabla \quad \text { me } \bar{V}^{+} M \leftrightarrow N E
\end{aligned}
$$

$\bar{\nabla}{ }^{\prime} \delta=0 \quad \bar{\nabla}+\delta=0 \quad \Rightarrow \quad \bar{\nabla}$ püspracbenà kor do .
watah ∇ a $\bar{\nabla}$

$$
\begin{aligned}
& \nabla=\bar{V}+\mathbb{H} \quad \quad H \quad \text { generovacé } H \\
& H=\mathbb{I}-\bar{I} \quad H^{+}=\mathbb{I} \quad H_{+}^{\prime \prime}=-\overline{\mathbb{I}} \\
& U \\
& \nabla_{c} a=\nabla_{c} a+\mathbb{I}_{c} \cdot a \\
& \nabla_{c} \alpha=\nabla_{c} \alpha+\alpha \cdot \bar{I}_{c} \quad \quad \nabla_{c} k=\mathbb{H}_{c} k-\bar{I}_{c} \cdot k \\
& \nabla_{c} k=\nabla_{c} k-k \cdot I_{c}
\end{aligned}
$$

derivace rojelturi

$$
\begin{array}{ll}
\nabla_{c}^{u} \delta=\mathbb{I}_{c}+\bar{I}_{c} & \Leftrightarrow \nabla_{c} \delta=\bar{\nabla}_{c} \delta+\mathbb{I}_{c} \cdot \delta+\delta \cdot \tilde{I}_{c}=\mathbb{I}_{c}-\bar{I}_{c} \\
\nabla_{c} \dot{ } \delta=-\left(\mathbb{I}_{c}+\bar{I}_{c}\right) & \Leftrightarrow \nabla_{c} \delta \delta=\bar{\nabla}_{c} \delta \delta-\bar{I}_{c} \cdot \delta-\delta \cdot I_{c}=-\left(\mathbb{I}_{c} \cdot \bar{I}_{0}\right)
\end{array}
$$

buncost $\operatorname{riv}\left(T+w_{i}\right) \Sigma$

$$
\begin{aligned}
& \bar{R}=\mathbb{R}+\mathbb{R} \\
& \mathbb{R}=\mathbb{R}_{n 11}{ }^{\prime \prime} \quad \mathbb{R}=\mathbb{R}_{n!1}{ }^{1} 1 \quad \bar{R}=\bar{R}_{n \prime \prime}
\end{aligned}
$$

ortogonél' rozstépu a metrucbé sow. der.

$$
\begin{aligned}
& g={ }^{1} g+1 " g \quad \quad \quad \quad \quad g_{11}=g_{11}=0 \quad \pi^{n} \eta \perp \pi^{\prime} M \\
& \nabla g=0
\end{aligned}
$$

シ
(II) melsincté mo TE

$$
V^{\prime \prime} g=0
$$

(1) metrickéra $\mathbb{N} \Sigma \quad \quad \theta^{+} g=0$
$\bar{\nabla}$ metricke wo $\Pi \Pi \leftrightarrow(\bar{T} \oplus \mathbb{N})_{i} \quad \bar{\nabla} g=0$

$$
\begin{aligned}
& g H_{c}+\left(g H_{c}\right)^{\top}=0 \quad j_{j} \quad H_{\text {amn }}=-H_{\text {amm }} \quad H_{\text {ann }}=g_{m} H_{n}^{k} \\
& { }^{\prime} g \cdot I I=I{ }^{\prime \prime} g \\
& j_{j} \quad \mathbb{I}_{\|\nu\|}^{\nu}=\bar{I}_{\|\lrcorner \|}
\end{aligned}
$$

$d: 2$

$$
\begin{aligned}
& \nabla_{c} V_{c} g="\left(\nabla_{c}{ }_{c} g\right)="\left(\nabla_{c}\left({ }^{\prime} \delta \cdot g\right)\right)="\left(\left(V_{c} \delta\right) \cdot g\right)={ }^{\prime \prime}\left(\nabla_{c}, S\right) \cdot " g=\left(V_{c} " \delta\right) \cdot " g=0 \\
& \nabla_{c}^{1} g={ }^{1}\left(V_{c}^{\prime} g\right)=^{+}\left(\nabla_{c}\left({ }^{1} \delta \cdot g\right)\right)={ }^{1}\left(\left(V_{c}^{\prime} \delta\right) \cdot g\right)=^{1}\left(\nabla_{c}^{\prime} \delta\right) \cdot g \cdot\left(\nabla_{c}^{\prime} \delta\right) \cdot g=0
\end{aligned}
$$

$$
\begin{aligned}
& 0=\nabla_{c} g=\nabla_{c} g-g H_{c}-\left(g H_{c}\right)^{\top}=-\left(g H_{c}+\left(g \cdot H_{c}\right)^{\top}\right) \\
& \left(g H_{c}+\left(g+H_{c}\right)^{\top}\right)_{11}={ }^{+} g \cdot H_{c}^{1}{ }^{\prime}+\left(" g \cdot H_{c \perp}^{\prime \prime}\right)^{\top}={ }^{+} g I_{c}-\tilde{I}_{c} \cdot{ }^{\prime \prime} g=0
\end{aligned}
$$

aurivace metrio

$$
\begin{aligned}
& \nabla_{c}{ }^{\prime \prime} g_{a b}=I_{c a b}+I_{c b a} \\
& T_{\text {IL }}{ }^{\prime} g_{a b}=\mathbb{I}_{c a b}+\mathbb{I}_{c b a} \\
& \nabla_{C}{ }^{1} g_{a b}=-I_{C b b}-I_{C b a} \\
& \nabla_{1 c}{ }^{+} g_{a b}=-\mathbb{I}_{c a b}-\mathbb{I}_{c b e} \\
& \nabla_{c}^{\prime \prime} g^{a b}=I_{c}^{a b}+I_{c}^{b a} \\
& \nabla_{a c}^{\prime \prime} g^{a b}=\mathbb{\pi}_{c}^{a b}+\mathbb{\pi}_{c}^{b a} \\
& \nabla_{c}{ }^{+} g^{a b}=-\pi_{c}^{a b}-\Pi_{c}^{b a} \\
& \nabla_{11 c}+g^{a b}=-\Pi_{c}^{c b}-\Pi_{c}^{b_{0}}
\end{aligned}
$$

disp:

$$
\begin{aligned}
& \nabla_{1 c}{ }^{\prime \prime} g_{a b}=\bar{\nabla}_{1 c}{ }^{\prime \prime} g_{a b}+H_{c}{ }^{\prime \prime} g_{o b}=I_{c c a}{ }^{k}{ }^{\prime \prime} g_{k b}+I_{c b}{ }^{k}{ }^{\prime \prime} g_{a k}=\Pi_{c a b}+I_{c b a} \\
& \begin{array}{l}
\nabla_{11 C}{ }^{1} g_{a b}=\bar{\nabla}_{1 c c}{ }^{1} g_{c b}+H_{C}{ }^{1} g_{a b}=-\mathbb{I}_{c a}^{k}{ }^{1} g_{c b}-\mathbb{I}_{c b}^{k}{ }^{1} g_{a k}=-\mathbb{I}_{c b a}-\mathbb{I}_{c a b} \\
\text { obdetae } g^{a b} \text { a }{ }^{1} g^{a b}
\end{array}
\end{aligned}
$$

Rozstépení krivusti ne (I由NN)玉
$\nabla_{1}=\bar{\nabla}+H_{1} \quad$ cháín o jake hoo der. ne Σ

$$
\begin{aligned}
& H_{c}^{\perp}=I_{c} \quad H_{c}^{\prime \prime}+=-\bar{I} \quad H_{c}=I_{c}-I_{C} \quad \bar{\nabla}^{1} \hat{\delta}=\bar{\nabla}^{\prime} \delta=0 \\
& R_{n 11}=\bar{R}+\bar{r}^{\prime \prime} d H+H A H
\end{aligned}
$$

$$
\begin{aligned}
& \Downarrow
\end{aligned}
$$

$$
\begin{aligned}
& \text { Moimardilio ror: }
\end{aligned}
$$

metrické der.

$$
\begin{aligned}
& I_{\text {a }}^{\text {don }}=I_{\text {awh }}
\end{aligned}
$$

Zùzení 2. fundamentálni formy a krivosti

$$
\begin{array}{ll}
T_{\nabla} \mathbb{I}_{m}=\bar{\Pi}_{c m}^{c} & T_{r} \mathbb{I}_{m}=T_{\Omega} \mathbb{I}_{2 m} \\
\Pi_{a b}^{2}=\bar{\Pi}_{a k}^{c} \mathbb{I}_{b c}^{k} & \mathbb{I}_{c b}^{2}=\mathbb{I}_{1121 b}^{2}
\end{array}
$$

zu'èen' brivosti

$$
\begin{aligned}
& R_{\text {nellb }{ }^{\text {ak }}}=\operatorname{Tr} R_{a b}+\Pi_{a b}^{2}-\Pi_{b c}^{2} \\
& T_{r} R_{\text {"anb }}=T_{r} R_{a b}+T_{r} R_{a b}
\end{aligned}
$$

metriebá derivace

$$
\begin{aligned}
& \operatorname{II}_{a k b}=\Pi_{a k b} \\
& T_{r} \underline{I}^{k}=\Pi_{a b}^{k}{ }_{-k}^{k} g^{b b} \\
& m^{2} x^{2}=(T \nabla I)^{2}={ }^{1} g^{k e} T_{\Delta} I_{k} T_{r} \Pi_{e} \\
& \mathbb{I}_{c b}^{2}=\Pi_{a c}^{k} \Pi_{b d}^{2} " g^{c d} g_{k e}=\Pi_{b c}^{2} \quad T_{r} \Pi^{2}=" g^{c b}{\Pi_{a b}^{2}}^{2}{ }^{1} g_{k e}^{\prime \prime} g^{c b u} g^{c d} \Pi_{a c}^{k} \Pi_{b d}^{d}
\end{aligned}
$$

rúize' brivosti - matridsà bez torze

$$
\begin{aligned}
& R_{\text {lialib }}^{\text {Mallb }}=T^{12}-\left(T_{\pi} I\right)^{2}+T_{r} \Pi^{2}=R-2 R_{i c_{1 k}}{ }^{1 k}+R_{\text {tkje }}{ }^{1 k+e}
\end{aligned}
$$

Semi-umbilic splitting of general cov.der.

$$
\begin{aligned}
& \overline{\mathbb{I}}_{a k}^{b}=\frac{1}{m} T_{r} \mathbb{I}_{k}^{\prime \prime} \delta_{a}^{b} \\
& \mathbb{I}_{a b}^{2}=\tilde{I}_{a k}^{c} \mathbb{I}_{b c}^{k}=\frac{1}{m} T_{r} \mathbb{I}_{k} \mathbb{I}_{b a}^{k}
\end{aligned}
$$

curvalure

$$
\begin{aligned}
& R_{\text {rallb }}{ }^{1 \text { m }}{ }_{1 n}=\mathbb{R}_{a b}{ }^{n}{ }_{n}-\frac{1}{m} T_{r} \mathbb{I}_{n} T_{\text {Na, }}^{I^{m}}
\end{aligned}
$$

contraction of curvatiore

$$
\begin{aligned}
& T_{r} R_{\text {vall }}=T_{r} R_{a b}+T_{r} \mathbb{R}_{a b} \\
& R_{\text {ucua }}^{\text {Ue }} \text { in }=\frac{\mu-1}{m} \mathrm{H}_{a} T_{r} \mathbb{I}_{n}-\frac{1}{m} t_{c a}^{c} T_{2} \Pi_{n}
\end{aligned}
$$

Semi-umbilie splitting of torsion-free cov. der

$$
\begin{array}{ll}
\Pi_{a k}^{b}=\frac{1}{m} T_{r} \Pi_{k}^{"} S_{a}^{b} & T_{a b}^{e}=0 \\
\Pi_{c b}^{e}=\Pi_{a k}^{c} \Pi_{b c}^{k}=\frac{1}{m} T_{r} \Pi_{k} \Pi_{a b}^{k} & \Pi_{a b}^{2}=\Pi_{b c}^{2} \quad \Leftrightarrow \Pi_{a b}^{k}=I_{b c}^{k}
\end{array}
$$

curvatare

$$
\begin{aligned}
& R_{\text {neulb }} \text { tm }_{\text {In }}=\text { R } R_{a b}{ }^{m} n_{n} \\
& R_{\text {nealb }}{ }^{t m}{ }_{\text {In }}=\overline{\bar{\nabla}} \bar{\Pi}_{b n}^{m}-\overline{\bar{\nabla}}_{b} \Pi_{a n}^{m}
\end{aligned}
$$

contraction of enroature

$$
\begin{aligned}
& R_{\text {ucliac }}^{\text {In }}=\frac{m-1}{m} \nabla_{a} T_{n} I_{n}
\end{aligned}
$$

Torally umbilic submanifolds
metric ges, Levi-Civites der $\nabla_{a} \quad \nabla g=0 \quad T=0$
$\mathbb{I}_{a k b}^{\nu}-\bar{I}_{a k b}^{b} \quad \Pi_{c h}^{k}=\Pi_{b a}^{k} \quad \Pi_{a b}^{2}=\mathbb{I}_{b a}^{r}$

$$
m^{2} s e^{2}=(T \mathbb{I})^{2}={ }^{1} g^{k e} T_{r} \Pi_{k} T_{r} \mathbb{I}_{e} \quad{I_{a b}^{2}}_{2}=\frac{1}{m^{2}}\left(T_{r} I\right)^{2} " g_{a b}=x^{2} " g_{a b}
$$

curvature

$$
\begin{aligned}
& R_{\text {naubucud }}=R_{a b c d}-e^{2}\left({ }^{n} g_{a c} "_{b d}-" g_{a d}{ }^{4} g_{b c}\right) \\
& R_{\text {llewl }}{ }^{\text {m/ }} \text { in }=R_{\text {ab }}{ }^{\text {m }}{ }_{n} \\
& R_{\| l a l l b}{ }^{1 m}{ }_{\| C}=\frac{1}{m}\left(\mathbb{T}_{a} T_{T} I^{m}{ }^{u} g_{b c}-\nabla_{b} T_{r} I^{m}{ }^{4} g_{a c}\right) \\
& R_{\text {ua ubucln }}=\frac{1}{\mu}\left(" g_{c a} \mathbb{T}_{b} T_{a} \Pi_{n}-{ }^{"} g_{c b} F_{a} T_{2} I_{n}\right)
\end{aligned}
$$

contreactions of cwovature

Submanifold in Einstein space

$$
\begin{aligned}
& R_{i C_{a b}}-\frac{1}{2} R g_{a b}+\lambda g_{a b}=0 \quad \quad \lambda=\frac{(m-1)(m-2)}{2 L^{2}} \\
& { }^{n} R i C_{a b}=\frac{(m-1)}{L^{2}} g_{a b} \quad R=\frac{m(m-1)}{L^{2}} \\
& R_{i c_{a b}}=R_{i c_{u a \| b}}-R_{l k n e}{ }_{a b b}+T_{r} \Pi_{k} \Pi_{a b}^{k}-\mathbb{I}_{a b}^{2} \\
& =\frac{m-1}{L^{2}}{ }^{"} g_{a b}-R_{\text {Ik\|e }}{ }^{{ }^{k}}{ }_{a b}+T_{R} \pi_{k} \Pi_{a b}^{\&}-\pi_{a b}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1) } \begin{array}{l}
m=m+1 \\
\text { 2) } R_{1+1+1}=\frac{1}{2 L^{2}}+g A^{t} g
\end{array} \Rightarrow 0
\end{aligned}
$$

umbilic

$$
\begin{aligned}
& T_{r} \Pi_{k} \Pi_{a b}^{k}-\mathbb{I}_{a b}^{2}=(n-1) x^{2} " g_{a b} \\
& \frac{1}{n(n-1)}\left(\left(T_{r} \mathbb{I}\right)^{2}-T_{r} \mathbb{I}^{2}\right)=x^{2}
\end{aligned}
$$

Submanifold in maximally symmetric space

$$
\begin{aligned}
& g \quad \nabla \quad \nabla_{g}=0 \quad T=0 \\
& \mathbb{I}_{a k b}=\bar{\Pi}_{a k b} \quad \Pi_{a b}^{k}=\Pi_{b c}^{k} \quad \Pi_{a b}^{2}=\mathbb{I}_{b c}^{2} \quad x e^{2}=1 \frac{1}{\mu^{2}}(\pi \mathbb{I})^{2}
\end{aligned}
$$

maxirally symetric space

$$
\begin{array}{ll}
R_{a b c d}=\frac{1}{L^{2}}\left(g_{a c} g_{b d}-g_{a d} g_{b c}\right) & R=\frac{1}{L^{2}} \frac{1}{2} g_{\hat{2}} g \\
R_{i c a b}=\frac{m-1}{L^{2}} g_{a b} \\
R=\frac{m(m-1)}{L^{2}}=\text { const } &
\end{array}
$$

curvature splitti-g

$$
\begin{aligned}
& \text { (1) }{ }_{a b c d}=\frac{1}{L^{2}}\left(" g_{a c} " g_{b d}-" g_{a d} " g_{b c}\right)+\left(\mathbb{I}_{a c}^{k} \Pi_{b d}^{e}-\mathbb{I}_{a d}^{k} \Pi_{b c}^{e}\right)+g_{k e} \\
& \mathbb{R}_{a b}^{m n}=\left(\mathbb{I}_{c c}^{m} \mathbb{\Pi}_{b d}^{n}-\mathbb{I}_{b c}^{m} \mathbb{\Pi}_{a d}^{n}\right) " g^{c d} \\
& \bar{\nabla} \mathbb{I}_{b n}^{m}=\bar{\nabla}_{b} \mathbb{I}_{a n}^{m} \\
& \operatorname{RNi}_{a b}=\frac{M-1}{L^{2}} " g_{a b}+\operatorname{Tr}_{\boldsymbol{I}} \Pi_{k} \Pi_{a b}^{k}-\Pi_{a b}^{2} \\
& \vec{H}_{\Delta} T_{r} I^{m}=\bar{\nabla}_{n} \Pi_{a}^{m n} \\
& \frac{1}{m(n-1)} \pi=\frac{1}{L^{2}}+\frac{1}{m(n-1)}\left((\operatorname{Tr} I)^{2}-\operatorname{Tr}^{2}\right)
\end{aligned}
$$

Totally umbilic submanifold of maximally sym. space

$$
\begin{aligned}
& g \quad \nabla \quad \nabla_{g}=0 \quad T=0 \\
& \mathbb{I}_{a k b}=\bar{I}_{a k b} \quad \mathbb{I}_{a b}^{b}=\mathbb{I}_{b c}^{k} \quad \Pi_{c b}^{2}=\mathbb{I}_{b a}^{2}
\end{aligned}
$$

umbilic

$$
\mathbb{I}_{a b}^{k}=\frac{1}{M} T_{\pi} \mathbb{I}^{k} \text { " } g_{c b} \quad\left(T_{r} \mathbb{I}\right)^{2}=m^{2} e^{2} \quad \Pi_{c b}^{2}=x^{2} " g_{a b} \quad T_{r} \mathbb{I}^{2}=m x^{2}
$$ maximally synetric space

$$
\begin{aligned}
& R_{c b c d}=\frac{1}{L^{2}}\left(g_{a c} g_{b d}-g_{a d} g_{b c}\right) \\
& R_{i c_{a b}}=\frac{m-1}{L^{2}} g_{a b} \\
& R=\frac{m(m-1)}{L^{2}}=\cos t
\end{aligned}
$$

curvature sphitti- y

$$
\text { TR } \text { abbed }=\left(\frac{1}{L^{2}}+2 e^{2}\right)\left(" g_{a c} " g_{b d}-" g_{a d} " g_{b c}\right)
$$

maxi~allysyouticic $\quad \frac{1}{l^{2}}=\frac{1}{L^{2}}+x^{2}=$ cost

$$
\begin{aligned}
& \mathbb{R}_{a b} n_{n}=0 \\
& \mathbb{D}_{a} T_{n} I_{n}=0 \\
& \mathbb{R}_{i} C_{a b}=\frac{m-1}{l^{2}} g_{a b}^{n} \\
& \text { (1) }=\frac{m(m-1)}{l^{2}} \\
& \frac{1}{l^{2}}=\frac{1}{L^{2}}+l^{2}
\end{aligned}
$$

Vnorení nadplochy

$$
d_{-} W I \Sigma=1 \quad d i-M=\operatorname{di}-\sum+1
$$

mormalarovamar more ále

$$
\begin{aligned}
& \forall \text { morualiz mornáloué fan e } \\
& \text { n worente mor, core', velztor } \\
& S=\delta-+\delta \\
& { }^{1} \delta=n v \\
& \text { \}duél lóze } n \cdot v=1
\end{aligned}
$$

metirive ma morn. bunder

$$
{ }^{+} g=s \nu \nu \quad \nu=s^{1} g \cdot n \quad n=s^{-1} g^{-1} \cdot \nu \quad S= \pm 1
$$

zlsácue' zrocte-

$$
A^{\cdots 1 \cdots}=A^{\cdots \cdots} V_{k} \quad A_{\ldots 1 \ldots}=A_{\ldots l} n^{k} \quad A_{1}=S A^{1}
$$

obecuè memése metritin "g ma TE
∇ obesné normálooé lochá 2o0. dor. ma TH

$$
\begin{array}{ll}
H n=0 & \nabla \nu=0 \\
H+g=0 & R=0
\end{array}
$$

altermstinn' zervalen'
preduklédá-e pouze projelteng é" "S, me marnatizacuonon morn- v ∇ mormálovè lodaé sou der., tj $\mathbb{R}=0$
\Rightarrow existuje Rov. Rownt norm wet. $n \quad \square n=0$

Nnejoi toin wost
derivace mormély podél Σ

$$
\Leftrightarrow \nabla_{1 a} \nu_{b}=\bar{\nabla}_{a} \nu_{b}-H_{a b}^{k} \nu_{k}=-I_{a b}^{k} \nu_{k}=K_{a b}
$$

$$
\nabla_{1 a} n^{b}=K_{a}^{b}
$$

$$
\Leftrightarrow \nabla_{n a} n^{b}=\bar{V}_{e} n^{b}+H_{a k}^{b} n^{k}=-\bar{I}_{a k}^{b} n^{k}=K_{a}^{b}
$$

derinace projeltùi podél Σ

$$
\begin{aligned}
& \nabla_{11 a} \delta_{b}^{c}=-\nabla_{11 a} \delta_{b}^{c}=K_{a b} n^{c}+K_{a}^{c} \nu_{b} \quad \Leftrightarrow \nabla_{1 a}^{d d} \delta_{b}^{c}=\nabla_{n a}\left(n^{c} \nu_{b}\right)=K_{a \leq} n^{c}+K_{c}^{c} \nu_{b} \\
& \left(\nabla_{1 a a}^{d \delta}\right)_{11 b}^{\perp}=K_{a b} \quad\left(\nabla_{1 a}+\delta\right)_{\perp}^{1 b}=K_{a}^{b}
\end{aligned}
$$

projekce torsze

$$
\begin{aligned}
& T_{\|a\| b}^{\| c}=\# c \\
& T_{a b}^{1} \\
& V_{a b}=-K_{a b}+K_{b a}
\end{aligned}
$$

$$
\Leftrightarrow T_{\operatorname{ba} \|_{b}}^{1}=\Pi_{a b}^{1}-\Pi_{b a}^{\perp}
$$

rozollepé binuost．
zúzená boüvost

$$
\begin{aligned}
& R_{\text {lle lla }}^{\text {"1 }} \text { " }=\text { 罗icab }-2 K_{a b}+K_{c}^{c} K_{c b}
\end{aligned}
$$

$$
\begin{aligned}
& R_{\text {ucub }}{ }^{\text {Im }} \text { Im }=\quad K_{a}^{m} K_{b m}-K_{b}^{m} K_{a m} \\
& \text { TrR保ib }=\operatorname{Tr} \operatorname{Rab}_{\text {ab }}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Raman}_{1}{ }^{1}=\quad-K_{a b} K_{b}^{k}+K_{a b} K_{a}^{k}
\end{aligned}
$$

$$
\begin{aligned}
& I_{a b}^{k}=-K_{a b} n^{k} \quad K_{a b}=-I_{a b}^{k} V_{k} \\
& \Pi_{a b}^{2}=K_{a}^{m} K_{b m} \\
& \tilde{I}_{a k}^{b}=-K_{a}^{b} \nu_{k} \quad K_{a}^{b}=-\bar{I}_{a k}^{b} n^{k} \\
& -\pi I_{m}=k \nu_{m} \quad k_{2}=K_{2}{ }^{a}=-T_{r} I_{1} \\
& x^{2}=S\left(\frac{k}{m}\right)^{2}
\end{aligned}
$$

Metrické unocení nadplochy metribe ma M

$$
g=s \nu \nu+q \quad 1 g=s \nu s \quad * g=q \quad s= \pm 1 \quad s^{2}=1
$$

metridzá derivace

$$
\begin{aligned}
& \nabla q=0 \Rightarrow \pi q=0 \quad \pi \quad \pi=0 \quad \text { abecnei } T \\
& I_{a k b}=\tilde{I}_{a k b} \quad K_{a b}=S k_{a b}
\end{aligned}
$$

rozstèpen sounvosti

$$
\begin{aligned}
& R_{\|a\| b l u d}=\pi a b c d-s\left(K_{a c} K_{b d}-K_{a d} K_{b c}\right) \\
& R_{\|a\| b \| c 1}=\left(\mathbb{M}_{a} K_{b}\right)_{c}=\pi / a K_{b c}-\pi / b K_{a c}+\prod_{a b}^{m} K_{m c}
\end{aligned}
$$

Levi-livitova derivace

$$
\begin{array}{ll}
T_{a b}^{c}=0 & K_{a b}=K_{b c}=s K_{a b}
\end{array} \quad K_{a b}^{2}=K_{a c} K_{b d} q^{c d}=s I_{a b}^{2}
$$

rozsttène korivosti

$$
\begin{aligned}
& R_{\text {liallaucird }}=\operatorname{Ra}_{\text {cbod }}-S\left(K_{a c} K_{b d}-K_{c d} K_{b c}\right) \\
& \text { Ruallblic1 }=\pi / c K_{b c}-\pi / b K_{a c}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ruclia" } 1=\text { Ricilla } \\
& =\pi / c K_{a}^{c}-\pi / a k \\
& R_{\text {nallb }}^{\text {vellb }} \equiv R-2 \text { sRicil } \\
& =(12)-s\left(k^{2}-x^{2}\right)
\end{aligned}
$$

Gauss - Codasziho identitc

$$
R=J R+2 s R i c_{11}-s\left(R^{2}-k^{2}\right)
$$

mormélové slozter Eimsteinova tenzorm

$$
\begin{aligned}
& R i C_{11}=\frac{S}{2}(R-T R)+\frac{1}{2}\left(k^{2}-k^{2}\right) \\
& E_{\text {in }}^{11}=R_{i C_{11}}-\frac{3}{2} R=-\frac{S}{2} N+\frac{1}{2}\left(k^{2}-R^{2}\right) \\
& E_{\text {inlua }}=R_{i c} c_{1 \| c}=\pi / c K_{a}^{c}-\pi / a k
\end{aligned}
$$

nomoremi do Eimsteimora prostoru

$$
\begin{aligned}
& R i c-\frac{1}{2} R g+\lambda_{g}=0 \quad \frac{1}{L^{2}}=\frac{2 \lambda}{(m-1)(m-2)} \quad R i c=\frac{1}{m} R g=\frac{m-1}{L^{2}} g \quad R=\frac{m(m-1)}{L^{2}} \\
& \Rightarrow R-2 s R_{i c}=\frac{m(m-1)}{L^{2}}-2 s^{2} \frac{m-1}{L^{2}}=\frac{m(n-1)}{L^{2}} \quad m=m-1
\end{aligned}
$$

$G l \Rightarrow \frac{1}{l^{2}} \equiv \frac{1}{M(M-1)}$ IIL $=\frac{1}{L^{2}}+\frac{s}{m(n-1)}\left(2^{2}-K^{2}\right)$ (memutmè Rons \&)
vonorèí do maxinálnè symetrického prostorn

$$
R_{a b c d}=\frac{1}{L^{2}}\left(g_{a c} g_{b d}-g_{c d} g_{b c}\right) \quad R i i_{a b}=\frac{m-1}{L^{2}} g_{a b} \quad R=\frac{m(m-1)}{L^{2}}=\text { Soust }
$$

\downarrow

$$
\begin{aligned}
& R_{a b c d}=\frac{1}{L^{2}}\left(q_{a c} q_{b d}-q_{c d} q_{b c}\right)+s\left(K_{a c} K_{b d}-K_{a d} K_{b c}\right) \\
& \mathbb{R i C}_{a b}=\frac{m-1}{L^{2}} q_{a b}+s\left(l_{2} K_{a b}-K_{a b}^{2}\right) \\
& \frac{1}{l^{2}} \equiv \frac{1}{M(n-1)} \text { (ID) }=\frac{1}{L^{2}}+\frac{s}{m(n-1)}\left(l^{2}-R^{2}\right) \\
& \pi / a K_{b c}=\pi / b K_{a c} \quad \pi / c K_{a}^{c}=\pi / a e_{2}
\end{aligned}
$$

umbilické unorèní

$$
K_{a b}=\frac{1}{m} k q_{a b} \quad K_{d b}^{2}=\frac{1}{m^{2}} k^{2} q_{a b} \quad K^{2}=\frac{1}{m} k^{2} \quad m^{2} x^{2}=s k^{2}
$$

4

$$
\begin{aligned}
& R_{\text {lieubicicid }}=R_{a b a d}-x^{2}\left(q_{c c} q_{b d}-q_{o d} q_{b c}\right)
\end{aligned}
$$

$$
\begin{aligned}
& R-2 s R_{1} c_{\perp 1} \equiv-2 s \text { EinI }=\Omega-m(m-1) e^{2} \\
& \text { Ruallbicl }=\text { D/ek } q_{b c}-10 / b \text { \& } q_{c c} \\
& \text { Rictic }=-\frac{n-1}{m} \text { War }
\end{aligned}
$$

\downarrow

$$
\begin{aligned}
\frac{1}{l^{2}} \equiv \frac{1}{m(n-1)} \text { (I) } & =\frac{1}{m(m-1)}\left(R-2 s R_{i} c_{+1}\right)+e^{2} \\
& =-\frac{2 s}{m(n-1)} E i n_{+1}+s^{2}
\end{aligned}
$$

umbilické vnorèn' do maxine'hè syen. prostorn

$$
\begin{aligned}
& \text { Webcd }=\left(\frac{1}{L^{2}}+b e^{2}\right)\left(q_{a c} q_{b d}-q_{a d} q_{b c}\right) \quad \frac{1}{l^{2}}=\frac{1}{L^{2}}+s^{2} \\
& \text { Widab }=\frac{m-1}{l^{2}} q_{a b} \\
& \\
& =\frac{m(n-1)}{l^{2}} \\
& \mathbb{R}_{a} b=0 \\
& \frac{1}{l^{2}}=\frac{1}{L^{2}}+x^{2}=\operatorname{Ras} t \quad x^{2}=s\left(\frac{k}{m}\right)^{2}
\end{aligned}
$$

Vnorení plochy do 3D max 3gm. pr

$$
\begin{aligned}
& m=3 \quad m=2 \quad s=+\quad \operatorname{sign} q=(+t) \\
& k=k_{+} e^{+} e^{+}+k_{-} e^{-} e^{-} \quad q=e^{t} e^{t}+e^{-} e^{-} \\
& k=k_{+}+k_{-} \quad k^{2}=k_{+}^{2}+k_{-}^{2} \quad k^{2}-k^{2}=2 k_{+} k_{-}
\end{aligned}
$$

nmorén' do $\mathbb{E}^{3} \quad R=0=\frac{1}{L^{2}}$
Ganss-Codorzi \Rightarrow

$$
\begin{array}{ll}
\frac{1}{l^{2}} \equiv \frac{1}{2} \text { III }=k_{+} k_{-} & \text {Theoreme Egreginm } \\
& \begin{array}{l}
\text { (Gauss) } \\
\text { (lnéjoi "porinost }
\end{array}
\end{array}
$$

nomitrmé köncost
vonorèmí do max. sgn- $1 r=$ fíre/eubl. LLobace.

$$
\begin{aligned}
& \frac{1}{l^{2}} \equiv \frac{1}{2} \text { 四 }=\frac{1}{L^{2}}+K_{+} K_{-} \\
& \begin{cases}>0 & \text { sfira } S^{3} \\
=0 & \text { enseidors }\end{cases} \\
& <0 \text { Lublacovshy } 17 E^{3} \quad R=\frac{6}{L^{2}}
\end{aligned}
$$

