Podvarieta, tecné vektory a normálové formy vnoie [Z do (: 2 -> M WE teen bundl E T"MCTM tecné vestoryh S v MM L: TZ -> T'MCTM $\alpha \rightarrow \iota_{\star} \alpha$ N* 2 normaloug bundl forem TIMOTH normalove form ? o TM Toth norvalove Jour amilie T'M KENIM => YacTM K. a= D NE abstract i voor norm. forem TIM prostor isomorfi s T+ T clajon jaso budl nad I Vx: NYZ -> TIMOT*M K -> X*K T* \(\) Solien \(\) bondl \(\) \(w → W| = 1*W W/12 a = W. (L, a) icnornje norm složbu (*TIM=0 N Z mormalowy burdl vestorin V*: TM -> N Z restrikae U -> U|NE = XXU MaNE Z K. UINE = (XK). U ignoraje trenon sloslar nelse amorit de TM VIIM=0

TIM mormalové vestory vnorené do TM (*: NZ -> TIMCTM definováno pomoci \$\$

NIM teine sovestory

Noviene do TAM

Lx: TI S - T, MCT*M

definovéno pomoci "S


```
2. fundamentalni forma bez projektory
V obecná kov. dur. na TM
                                                                                                                                                                                                                                             tre e velter
                                                                                                      ixa, Lbe TM
 a, b e TI
  K. J & WZ
                                                                                               Yxk, Yxle TIM
                                                                                                                                                                                                                                             non alove for
    xx (Vab) ENIZ
                                        - ultrodolo la no
                                                                    B Wast-osti 7
                                         - ultraloze'l v h
                                                                     x* (\(\na_{(a}(\,\fb)) = \name \(\frac{1}{2}(\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2}\,\frac{1}{2
                                          · les representavoit tensorie
                                                                    In & II * ZONZ >* (Palb) = In b
                                                                    I & TOZOMZ Iab = C. I.b
     L* (V, V*K) & T* Z
                                          - Utraldeli va
                                                              & Mostrudi V
                                        · ultralosel NK
                                                                    (*( \(\frac{1}{2}\) \(\frac{1}{2}\) = (*(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) = \(\frac{1}{2}\) (\(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}
                                          · les rejexuent terre Ia ravede-j- mose
                                                                 IIa E TEONI (Vark) = - K. IIa
                                                                   muchi (*(Vin Xik) = -K·IIa
                                                                              0 = Via (k.b) = Via (xx. L.b) = (Vaxx) (1.b) + (xx) Via (b) =
                                                                                     = (*(\nabla_{a} \vee_{k} \vee_{b}) \cdot b + \vee_{b} \vee_{k} \vee_{k} (\nabla_{b} \vee_{k} \vee_{b}) = - \vee_{b} \widetilde{\mathbb{I}}_{a} \cdot b + \vee_{b} \widetilde{\mathbb{I}}_{b} \cdot b = - \vee_{b} \widetilde{\mathbb{I}}_{a} = \overline{\mathbb{I}}_{a}
 restrikce torse
                             Tuanb = Vialb - Vibla - [hall+b] = Vialb - Vibla - (x/a/b)
                            Y' Trach = Y'(Trach) - Y'(Trabia) = a.I.b - b.I.a
```

 $(V^*T = T_{ij}^v = II - II^T$

```
Podvarieta s projektorem
  (: Z -> M podroviela Z n M
punczene struktury
    ( TZ > T'MCTM
                              voca her jeh vellen
                              restrikce forer - me tec-eformy
   (* : T*H -> T*Z
   Yx: N* E -> T, M C T*H
                              vorie- normalough fore
   Y. TM -> NE
                             restritce vestori, ra mornal welt.
projektory na tečne a norm. složby
   TIM Nolla mornal podprostore vestori THETH TITETH
   TIM volle teà rélo polprostora fore TIMCTIM TIMETIMETIM
   dualita T'Ma TiM - jeden prostor vrenje bulg
     LeT'M C= VXETUM X.K=D
      act, M = YkeTM x.k=0
   projektory
    18 TM > TM
                  ker S = T'M ing S=T"1
                                          15-5-5
    18: TM -> 71 M
                   ker S = T"M ing &= T'M
                                         18-18-18-0
    S. TM -T M
                ker 8 = TIM ing 8 = Tim
                            ing &= TIM
    E: TT - TIM Ker'S = TyM
Eyber TII, T.M unosinge rossit isonorf. L. a Xx
     Lx TE > T'MCIM
                       (, a = T'M > 1, a = 0
                        LIKET'M Y*LK=K MORDITEL NO NIE
     L. INE - TIMOTM
     L. TENZ -> TM
                        isomorfism velstoren
     V. IN I - TIMETM
                        N*KE 1111 1, N*K = 0
                       YXX = II I LYX = X POSO, FRE NO TE
     V. T'Z - TIMETM
     V.: TON'S > T*M isomorfisms force
     (Vx (T+N)) = E -> Tom isomorf indilectory is me belt a Xx ma form
pri fixoranjeh jodprostoruch TM TIM seg projektival 8, 8
    sutrieba rozlisovat mezi
        (T+N) P Z a TPM
```



```
Rnace ~
   8= 8+18
    "8 projektor na PM
  "A a = "Si "Si A = projetce na T'M ve vied i-deced
  +Ab. = Sx. Sh. Al. projekce na I'M ne wed i deted
  A.16. a A.11. surioné projet e
           "A res, +A idikuje, De "A je leine, resp. +A je norm.
   budene uzivet
     a, b, c, ... e T'M
     ∝, B, S, ... E T, M
     k, l, m, -. e 1 17
      K,J, M. .. ETIM
   metris e
     4 S = Sun
                  metriko na TZ = T"M
                  metrize a nornélové - andle MZ=TIM
     \frac{1}{7} \tilde{Q}_{s} = \tilde{Q}_{17}
\frac{1}{7} \tilde{Q}_{s} = \tilde{Q}_{17}
```

metrika na NX = TIM

ortogoralita

Q1 = Q 11 = 0

Rozstèpení kov. derivace na TM V oberné Lov. der. na TM akee na tecné bindh 1 2 Va = Va + I. a ganssove formule Va = "(Va) Sov. der no TI II. a = C. II. a = (Za) 2 find. forma IC IC IC TONE dist: "(Vea) splinge visely black - Low dos (Vea) ultralos. v a: (Ve(fa)) = (f Vea + c(f)a) = f-(Vea) Pozpiren V na teoné tenzory TipMarTZ V, A = "(ZA) pro A = "A dit: stand rossine no formy: (\(\mathbb{V}_{\alpha} \alpha \) - \(\mathbb{V}_{\alpha} \alpha \) = \(\mathbb{V}_{\alpha} \alpha \) - \(\mathbb{V}_{\alpha} \alpha \) = \(\mathbb{V}_{\alpha} \alpha \) - \(\mathbb{V}_{\alpha} \alpha \) = \(\mathbb{V}_{\alpha} \alpha \) - \(\mathbb{V}_{\alpha} \alpha \) = \(\mathbb{V}_{\alpha} \alpha \) - \(\mathbb{V}_{\alpha} \alpha \) = \(\mathbb{V}_{\alpha} \alpha \) - \(\mathbb{V}_{\alpha} \alpha \) = \(\mathbb{V}_{\alpha} \alpha \) - \(\mathbb{V}_{\alpha} \alpha \) = \(\mathbb{V}_{\alpha} \alpha \) - \(\mathbb{V}_{\alpha} \alpha \) = \(\mathbb{V}_{\alpha} \alpha \) - \(\mathbb{V}_{\alpha} \alpha \) = \(\mathbb{V}_ => \ \ \ \ \ \ \ = \ \(\sqrt{\alpha} \alpha \) komtace projekce sterz mas+ Leilis => pozsirien na terzory prirozene plati V 5 = 0 des: Vea = Ve("S.a) = "(Ve("S-a)) = "(Ve"S).a+ "S. Vea) = "(Ve"S).a+ Vea) = (Ve"S).a+ Vea nozstejení torze T" = #

 $T_{n|n}^{\perp} = \overline{I} - \overline{I}^{T}$ $d^{2}b^{2} :$ $T_{\alpha_{1}b}^{\parallel} = {}^{\parallel}(\nabla_{\alpha}b - \nabla_{b}\alpha - [\alpha_{1}b]) = \overline{\nabla}_{a}b - \overline{\nabla}_{b}\alpha - [\alpha_{1}b] = \overline{\tau}_{\alpha_{1}b}$ $T_{\alpha_{1}b}^{\perp} = {}^{\perp}(\nabla_{\alpha}b - \overline{\nabla}_{b}\alpha - [\alpha_{1}b]) = \alpha \cdot \overline{I} \cdot b - b \cdot \overline{I} \cdot \alpha$

Dece ne normáloven budle ME

Ve k = Ve k - Te k

Dov. der. na ME

Te k = '(Ve k)

Le = Te k

Te k = '(Ve k)

Le = Te k

Te = Te k

T

F. 18 = 0

```
restrikee V na prispisoberon lov. der P
    J= VOV na Tha (TON) E
         T= W Ma W"T - TE
        V= V Me TIM CO NE
     prinozené nozpire ne Tano (TON) ? E
       78=0 78=0 = 7 préjusoberé sou de.
     Notal Va ?
       V = V + HI H generouse H
     H = \overline{I} - \overline{I} \qquad H_{+}^{1} = \overline{I} \qquad H_{1}^{1} = -\overline{I}
      Vea = Vea + Ica Vek = Vek - Ick
     \nabla_{\alpha} = \nabla_{\alpha} + \alpha \cdot \overline{\mathbb{I}}_{\alpha}
\nabla_{\alpha} = \nabla_{\alpha} + \alpha \cdot \overline{\mathbb{I}}_{\alpha}
     derivace projekturi
       V 18 = I + I
                                     = Ve'S = Ve'S + Ie "S + "S · Ie = Ie + Ie
       \nabla_{c} \cdot S = -\left(\underline{\mathbb{I}}_{c} + \underline{\mathbb{I}}_{c}\right)
                                       € 72-18 = 72-18 - Ic = - (Ir-In)
     Sourcest Ne (T+NI) Z
       R = R + R
```

 $\mathbb{R} = \mathbb{R}_{\mathbb{R}^{n}}^{\mathbb{R}} = \mathbb{R}_{\mathbb{R}^{n}}^{\mathbb{L}} = \mathbb{R}_{\mathbb{R}^{n}}^{\mathbb{L}}$

ortogonal rozatepen a metricle don der.

$$g = \frac{1}{3} + \frac{1}{3}$$
 $f: g_{1n} = g_{nx} = 0$ $f'' \cap f = 0$ $f' \cap f = 0$

$$g \cdot H_c + (g \cdot H_c)^T = 0 \qquad \text{i.} \qquad H_{amn} = -H_{amn} \qquad H_{amn} = g_{mk} H_{air}$$

$$f \cdot \overline{I} = \overline{I} \cdot g \qquad \text{i.} \qquad \overline{I}_{1111} = \overline{I}_{1111}$$

dis

derivace metrix

dus:

Rozstèpení krivosti na (TON) Z

$$\nabla_{l} = \overline{\nabla} + HI$$
 chajáno jako brov. der. Me Σ
 $H_{c}^{-1} = \overline{I}_{c}$ $H_{c}^{-1} = -\overline{I}$ $H_{c} = \overline{I}_{c} - \overline{I}_{c}$ $\overline{\nabla}^{1} \mathcal{S} = \overline{\nabla}^{1} \mathcal{S} = 0$

Rhall, In = Robin - Iak Ibn + Ibk Ian Janssova rovice

Rush in = Robin - Iak Ibn + Ibk Ian Picci (Kühne) nov.

metricle der.

Zhzeni 2. fundamentalni formy a krivosti

Euseu Brivosti

metrica derivace

ENZE Drivosti - metrické bez torze

Semi-umbilie splitting of general cov. der.

consalure

$$R_{\text{Nallb III}} = R_{\text{ab}} - \frac{1}{M} T_{\text{NL}} \left({}^{\text{II}} S_{\text{m}} \prod_{k}^{k} \prod_{k}^{k} \prod_{n}^{k} \right) = R_{\text{ab}} + \prod_{n}^{2} I_{\text{N}} S_{\text{m}} - \prod_{n}^{2} I_{\text{N}} S_{\text{m}}$$

$$R_{\text{Nallb III}} = R_{\text{ab}} - \frac{1}{M} T_{\text{NL}} \prod_{n}^{k} \prod_{n}^$$

contraction of evendure

Semi-umbilie splitting of torsion-free cov. der

ouveture

contraction of enviolence

Totally umbilic submanifolds

metric ges, Levi-Civita der Va \(\text{\$7g = 0 } \) \(\text{\$T = 0\$} \)

Hakb = \(\text{\$\text{\$Iakb}\$} \) \(\text{\$\text{\$Iak }} = \text{\$\text{\$\text{\$Iak }}\$} \)

umbilic \(\text{\$\text{\$\text{\$Iak }}\$} = \text{\$\text{\$\text{\$\text{\$Tr\$\$\$\$\$\$}\$}\$} \)

mabilic \(\text{\$\text{\$\text{\$Iak }}\$} = \text{\$\text{\$\text{\$\text{\$r\$}\$}\$} \]

mabilic \(\text{\$\text{\$\text{\$Tr\$\$\$\$\$\$\$}\$} \)

mabilic \(\text{\$\text{\$\text{\$Tr\$\$\$\$\$\$\$\$\$\$\$\$}} \)

mabilic \(\text{\$\text{\$\text{\$Tr\$\$\$\$\$\$\$\$\$\$}} \)

mabilic \(\text{\$\text{\$\text{\$Tr\$\$\$\$\$\$\$\$\$}} \)

mabilic \(\text{\$\text{\$\text{\$Tr\$\$\$\$\$\$\$\$}} \)

mabilic \(\text{\$\text{\$Tr\$\$\$\$\$\$\$\$}} \)

mabilic \(\text{\$\text{\$Tr\$\$\$\$\$\$\$\$\$}} \)

mabilic \(\text{\$\text{\$Tr\$\$\$\$\$\$\$\$\$}} \)

mabilic \(\text{\$\text{\$Tr\$\$\$\$\$\$\$\$\$}} \)

mabilic \(\text{\$\text{\$Tr\$\$\$\$\$\$\$\$}} \)

mabilic \(\text{\$\text{\$Tr\$\$\$\$\$\$\$\$}} \)

mabilic \(\text{\$\text{\$Tr\$\$\$\$\$\$\$}} \)

mabilic \(\text{\$\text{\$Tr\$\$\$\$\$\$}} \)

mabilic \(\text{\$\text{\$Tr\$\$\$\$\$}} \)

mabilic \(\text{\$\text{\$Tr\$\$\$\$\$\$}} \)

mabilic \(\text{\$\text{\$Tr\$\$\$\$\$}} \)

mabilic \(\text{\$\text{\$Tr\$\$\$\$\$}} \)

mabilic \(\text{\$\text{\$Tr\$\$\$\$\$}} \)

mabilic \(\text{\$\text{\$Tr\$\$\$\$\$\$}} \)

mabilic \(\text{\$\text{\$Tr\$\$\$\$\$\$}} \)

mabilic \(\text{\$\text{\$Tr\$\$\$\$\$\$}} \)

mabilic \(\text{\$\text{\$Tr\$\$\$\$\$}} \)

mabilic \(\text{\$\text{\$Tr\$\$\$\$}} \)

mabilic \(\text{\$\text{\$Tr\$\$\$\$}} \)

mabilic \(\text{\$\text{\$Tr\$\$\$\$}} \)

mabilic \(\text{\$\text{\$Tr\$\$}} \)

mabilic \(\text{\$\text{\$Tr\$\$}} \)

mabilic \(\text{\$\text{\$Tr\$\$\$}} \)

mabilic \(\text{\$\text{\$Tr\$\$}} \)

mabilic \(\text{\$\text{\$Tr\$}} \)

mabilic \(\text{\$\text{\$\text{\$Tr\$}} \)

mabilic \(\text{\$\text{

curvature

contractions of consolure

RICHA 116 = Ricab - (M-1)
$$3e^{2}$$
 "Gab = Richallo - Rikha 116

RICHA 110 = M-1 V_a TRIn = Richallo 110 = Ri

Rually = W- M(N-1) Dez = R- 2 Riczk + RILLE TKIE

Submanifold in Einstein space

$$Ric_{ab} = \frac{1}{2}Rg_{ab} + \Lambda g_{ab} = 0$$
 $\Lambda = \frac{(m-1)(m-2)}{2L^2}$
 $Ric_{ab} = \frac{(m-1)}{L^2}g_{ab}$ $R = \frac{m(m-1)}{L^2}$

$$\frac{1}{m(n-1)} = \frac{1}{2} + \frac{1}{m(n-1)} \left((T_{1}T_{1})^{2} - T_{1}T_{2}^{2} \right) + \frac{1}{m(m-1)} \left(R_{1} k_{1} k_{1}^{2} - (m-n) (m-m-1) \right)$$

$$\frac{1}{m} = m+1$$

$$\frac{1}{2} R_{11} k_{1} = \frac{1}{2} k_{2}^{2} k_{3} k_{3}^{2} = 0$$

umbilic

$$T_{\overline{n}} \underline{\mathbb{I}}_{k} \underline{\mathbb{I}}_{os} - \underline{\mathbb{I}}_{os}^{2} = (n-1) \mathcal{J}_{e}^{2} \, {}^{"} g_{ob}$$

$$\underline{\mathbb{I}}_{m(n-1)} \left(\left(T_{\overline{n}} \underline{\mathbb{I}} \right)^{2} - T_{\overline{n}} \underline{\mathbb{I}}^{2} \right) = \mathcal{J}_{e}^{2}$$

Submanifold in maximally symmetric space g V Vg=0 T=0 Ilako = Ilako Ilab = Ilba Ilab = Ilba De = 1 (TOII) maximally symptoic space R=1=2909 Rabed = 12 (gacgbd - god gbc) Ricas = M-1

$$Ric_{ab} = \frac{M-1}{L^2} g_{ab}$$

$$R = \frac{M(M-1)}{L^2} = const$$

curalive splithing

The look of the land of the la Reb = (II m Ibd - Ibc Iad) "gcd

Ricab = M-1 "Gab + TrIk I'ab - IIab V TIIM = Vn In

$$\frac{1}{M(n-1)} \mathbb{R} = \frac{1}{\mathbb{L}^2} + \frac{1}{M(n-1)} \left(\left(\overline{\ln \mathbb{L}} \right)^2 - \overline{\ln \mathbb{L}^2} \right)$$

Totally umbilic submanifold of maximally sym. space g V Vg=0 T=0 Ilakb = Ilakb Ilab = Ilba Ilab = Ilba umbilic I'm = m TrI "gas (TrI) = m de I's = H? "gas TrI = m de? maximally symetric space Robert = 12 (gac glad - gad glac) Ricob = M-1 gas R = M(m-n) = corst curvature splitting Rabed = (1/2 + 202) ("gae "god - "god" goc) maximally symmetric for = for + se2 = const Rab n = 0 Fa TriIn = 0 Ricab = M-1 113ab $\frac{\sqrt{m}}{\sqrt{n}} = \frac{M(m-1)}{\sqrt{n}}$

 $\frac{1}{0^2} = \frac{1}{12} + 4e^2$

```
Vnorení nadplochy
   di- MZ = 1 oli- M = oli- Z + 1
mormalizovana mornale
   V mornaliz normálová fan e
                                            (dual la ze nov=1
   n noralia mondou velston
    78 = UN 8 = 2-12
   metrike na noon. bundle
      tg = SVV. V = stg.n n = stg.v S=±1
   Ebrace Erace
       A-1 = A-k - Vk A - = A-k - 0k A = S A-1-
obseré memére metriku "g ma TE
V obecné normálové plocha 200. doz. ma TM
    Yn=0 Yv=0
                                 \frac{1}{2} \cdot \frac{1}{2} \left( \frac{1}{2} \cdot \frac{1}{2} \right) = 0 \qquad \frac{1}{2} \left( \frac{1}{2} \cdot \frac{1}{2} \right) = 0
   \mathbb{A}^{\perp} \mathcal{A} = 0
             R = 0
```

alternation Revealen:

predpelédé — pouze projektien & "S, me marnalizaciona morm. V

V mornálove plochá kor. der., t; R = 0

=) existinje lov. longt morm velet. n Pn = 0

Nolba shály (v jeho ledě) definje mornálu n, v

nnejsi brinost

$$I_{ab}^{k} = -K_{ab} n^{k}$$
 $K_{ab} = -I_{ab}^{k} V_{k}$

$$-\overline{\Pi} = 2 \nu_{m} \qquad 2 = K_{a} = -\overline{\Pi}$$

$$\mathcal{H}^{2} = 5 \left(\frac{2}{3}\right)^{2}$$

projekce forke

nozotejen kinnosti

Zúzena Srivost

```
Metrické unočení nadplochy
metrika na M
  g = S \nu \nu + q  \frac{1}{9} = S \nu \nu  g = q  g = \pm 1  g = 1
metoriche derivace
   7g=0 => Wg=0 \ \mathbb{H}x=0 \ \mathbb{R}=0 \ obecna T
                Ilako = Ilako Kob = SKob
 nozatejem souvosti
   Rnaublichd = Dabed - 3 (Kac Kbd - Kad Kbc)
   Rhallblic 1 = (Vakb)c = Vakbc - Vbkac + Hab Kine
 Levi-Civitora derivora
   Tob = O Kab = Kbc = S Kab Kab = Kac Kbd 9cd = S Ilab
                                      K2 = K2 = 5 Tr II2
    2 = K2 = - TRILL M'28 = SE
 nozātājem krivosti
    Ruamona = Robed - S (Kackbd - Koskba)
    Ruenbuch = Ve Kbc - Vb Kac
    Rucha ub = Richanb - SRLHeINb = Ricab - S(BKas-Kas)
   Rucha L = Ricina = Ve Ka - Ve &
    Ruenb = R-2sRiczz = D-s(2-x2)
  ganss-Codazziho identite

R = R + 28 Riczz - S(2- K2)
  mormélové slosla Einsteinoux tensorm
     Ric11 = 5 (R-R) + 1 (22-K2)
     Einzz = Ricz = - 3 R + (b-2)
     Einzua = Riczua = Vc Ka - Val
  Nouveni de Einsteinour prostoru 

Ric - \frac{1}{2}Rg + Ag = 0 \frac{1}{L^2} = \frac{2A}{(m-1)(m-2)} Ric = \frac{1}{m}Rg = \frac{m-1}{L^2}g R = \frac{m(m-1)}{L^2}
      \Rightarrow Q - 28Ric_{11} = \frac{m(m-1)}{L^2} - 28^2 \frac{m-1}{L^2} = \frac{m(n-1)}{L^2} \qquad m = m-1
    G-C= \int_{\mathbb{R}^2} = \int_{\mathbb{R}^2} \frac{1}{M(M-1)} \left( \frac{1}{M(M-1)} \left( \frac{1}{M(M-1)} \left( \frac{1}{M(M-1)} \left( \frac{1}{M(M-1)} \right) \right) \right)  (me mut me konst)
```

```
vnoient de maximalne symétrického prostoru
  Robed = 12 (gacgod - gedgoc) Ricob = M-1 gos R= M(M-1) = Soust
   Robed = 12 ( gac god - god goc) + S ( Kac Kbd - Kad Kbc)
   Ricab = M-1 9ab + S(& Kab - Kab)
    \frac{1}{2^2} = \frac{1}{M(n-1)} = \frac{1}{2} + \frac{5}{M(m-1)} (2^2 - 2^2)
   We Kbc = Wo Kcc We Ka = Was
umbilise vnorem
   K_{ab} = \frac{1}{M} 2 q_{ab} K_{ab}^2 = \frac{1}{M^2} 2^2 q_{ab} K_{ab}^2 = \frac{1}{M} 2^2 M^2 2 = 3 2^2
    Rhousucad = Robed - De ( gac glod - god gloc )
    Richard - 3 Rivalub = Picos - (M-1) 202 gab
    R-28 Ric11 = -28 Einst = R - m(m-1) de2
    Ruallone 1 = Vol 9bc - Vb2 gcc
    Richa = - n-1 Va &
   \frac{1}{Q^2} = \frac{1}{M(M-1)} \mathbb{R} = \frac{1}{M(M-1)} \left( \mathbb{R} - 2s \operatorname{Ric}_{11} \right) + 2e^2
                   = - 23 Ein+1 + 2e2
unbilide vnoren do macinalhe syn- postorn
    Paled = (12+De) (gac glod - gad gloc) = 1 = 1 + De?
    Ricas = M-1 geb
     = M(M-1) 
     Vak = 0
    \frac{1}{12} = \frac{1}{12} + 2l^2 = 2ast
                              de = S(2)
```

Vnotení plochy do 30 mex sym. pr m = 3 M = 2 s = + sign q = (++)K = k+ e+e+ + k_ e-e- q = e+e++e-e $k = k_{+} + k_{-}$ $k^{2} = k_{+}^{2} + k_{-}^{2}$ $k^{2} - k^{2} = 2k_{+}k_{-}$ nnoren do \mathbb{E}^3 $\mathbb{R} = 0 = \frac{1}{12}$ ganss-Codazzai => 1 = 1 D = K+K- Theoreme Egregium 1 (Gauss) let. "jozoruhodný" teoré unejo Szirost vnitam krivest vonoriemé do mar. sy - 177 = sferre/lust./Lobar. $\frac{1}{0^2} = \frac{1}{2} + k_+ k_-$ >0 sfira \$3 =0 enslidonsly pr E3

<0 Loboce vskehojs H3